Krein-space formulation of $$\mathcal{P}\mathcal{T}$$ symmetry, $$\mathcal{C}\mathcal{P}\mathcal{T}$$ -inner products, and pseudo-Hermiticity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Krein-Space Formulation of PT -Symmetry, CPT -Inner Products, and Pseudo-Hermiticity

Emphasizing the physical constraints on the formulation of a quantum theory based on the standard measurement axiom and the Schrödinger equation, we comment on some conceptual issues arising in the formulation of PT -symmetric quantum mechanics. In particular, we elaborate on the requirements of the boundedness of the metric operator and the diagonalizability of the Hamiltonian. We also provide...

متن کامل

QT -Symmetry and Weak Pseudo-Hermiticity

For an invertible (bounded) linear operator Q acting in a Hilbert space H, we consider the consequences of the QT -symmetry of a non-Hermitian Hamiltonian H : H → H where T is the time-reversal operator. If H is symmetric in the sense that THT = H, then QT symmetry is equivalent toQ-weak-pseudo-Hermiticity. But in general this equivalence does not hold. We show this using some specific examples...

متن کامل

Pseudo-Hermiticity, PT-symmetry, and the Metric Operator ∗

The main achievements of Pseudo-Hermitian Quantum Mechanics and its distinction with the indefinite-metric quantum theories are reviewed. The issue of the non-uniqueness of the metric operator and its consequences for defining the observables are discussed. A systematic perturbative expression for the most general metric operator is offered and its application for a toy model is outlined.

متن کامل

Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition

We discuss certain features of pseudo-Hermiticity and weak pseudo-Hermiticity conditions and point out that, contrary to a recent claim, there is no inconsistency if the correct orthogonality condition is used for the class of pseudo-Hermitian, PTsymmetric Hamiltonians of the type Hβ = [p + iβν(x)] 2/2m + V (x). PACS: 03.65.Ca

متن کامل

Pseudo-Hermiticity versus PT Symmetry III: Equivalence of pseudo-Hermiticity and the presence of anti-linear symmetries

We show that a (non-Hermitian) Hamiltonian H admitting a complete biorthonormal set of eigenvectors is pseudo-Hermitian if and only if it has an anti-linear symmetry, i.e., a symmetry generated by an anti-linear operator. This implies that the eigenvalues of H are real or come in complex conjugate pairs if and only if H possesses such a symmetry. In particular, the reality of the spectrum of H ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Journal of Physics

سال: 2006

ISSN: 0011-4626,1572-9486

DOI: 10.1007/s10582-006-0388-8